A technique for delivering individualised formative problems and examples

Dr Karen Ayres & Dr Paul Glaister
Department of Mathematics and Statistics
University of Reading
Challenges of teaching STEM

• Diverse students
 – Background knowledge
 – Ability
 – Interest and engagement!

• Learning has to take place outside of the lecture which introduces the techniques.
Active learning

• Mathematics and Statistics particularly benefit from **active learning**.

• Students need to **do** maths and stats in order to
 – improve memory of problem solving techniques
 – develop expertise in identifying and applying techniques and interpreting results
 – gain confidence

• Regular formative problems are important.
The problem(s) with problems!

• How to pitch them at the right level?
 – Easy problems to help those who are struggling – but the better students switch off
 – Harder problems to challenge the better students – but the weaker ones give up trying

• We would like to provide an appropriate series of problems that get progressively harder for each topic ... and automate the decision regarding which level of difficulty is currently appropriate.
A possible solution … autoQs

• autoQs – a system (in Excel) for delivering problems in sequence *tailored* to a student’s level
 – Struggling? Try an easier question (with hints)
 – Doing well? Try more challenging questions
 – Build confidence and expertise until the topic is mastered to a sufficient level

• The level of the question to show is chosen by the program (depending on results so far).
The methodology behind autoQs

• A variation of the ‘3+3’ dose escalation procedure used in clinical trials.

• For us ... first...
 – Assign each question or example a difficulty level (a ‘dose’)
 – Each level needs at least 6 questions
 – Create up to five files containing relevant support material (general or question specific)
Our intra-student $3+3+1 \times k$ dose escalation design

- On first visit to difficulty (‘dose’) level i, deliver 3 questions
 - If 3 are sufficiently understood, escalate to level $i+1$
 - If 0 or 1 are sufficiently understood, de-escalate to level $i-1$
 - Else deliver 3 more questions for level i
Our intra-student $3+3+1 \times k$ dose escalation design

- After 6 questions have been attempted for difficulty level i
 - If 5 are sufficiently understood, escalate to level $i+1$
 - If 2 or 3 are sufficiently understood, de-escalate to level $i-1$
 - Else deliver 1 more question for level i and re-evaluate (continue until user-defined de/escalation rule is passed)
Application 1 – statistics service course

- Second year module on “Statistics and Epidemiology for the Life Sciences”

- 80 questions on the chi-squared test of independence were produced – all with medical/health/nutrition focus

- 8 batches of 10 questions with different levels of difficulty
 - With expected values, with formulae, with hints, or no help and no table!
A demonstration ...

- What the lecturer sees is a spreadsheet to enter filenames of pre-prepared materials.

- What the student sees is an Excel form which is the interface for delivering the questions and materials (depending on ability level).

- Let’s see ...
Application 2 – geometry option

- First year module on “Geometry”.
- Several revision questions on loci, parabolas, ellipses, hyperbolas.
- Focus here is not on bypassing questions through escalation of level, but on delivering every question per section ...
 ... and releasing support files in a sequential way.
- This requires a modification of the program.
A demonstration

• The student now has a “Hint” button to press, to enable the next support button in the list
 – Figure illustrating the problem (PDF)
 – Statement of the final answer (PDF)
 – Geogebra interactive file showing answer (GGB/HTML)
 – Partial solution (to act as a hint if stuck; PDF)
 – Full solution (PDF)

• Let’s see ...
Possible future directions

• The system is generic
 – Any image can be displayed on the left
 – Any five files (or fewer) can be accessed from the right

• To incorporate marking of questions, can use an existing system e.g. Maple TA
 – Image can display an ID code for one of several “mini-tests” in Maple TA
 – Support files on the right
 – “Percentage understanding” becomes “Record your mark”
In conclusion

• We believe that individualised sequences of formative problems will help guide students through their learning.

(We are awaiting feedback from students!)

• Although developed for mathematics and statistics, the Excel file can be used by anyone for any subject.

• Free to download from http://www.personal.reading.ac.uk/~sns99kla/
Thank you for listening

• Any questions?

Acknowledgements

This project was funded by a University of Reading Early Career Teaching Fellowship award.