A Learning Spaces Strategy for the 21st Century

Toni Kelly¹ and Simon Steiner²

University of Birmingham and Higher Education Academy Engineering Subject Centre, UK

Overview
This Workshop begins by briefly reporting on the JISC funding received by the University of Birmingham to undertake a UK-wide study into how learning technologies influence the design of physical learning spaces.

Attendees at the Workshop will then have opportunity to engage in a design activity for the creation of a new learning space from the principles learnt from the JISC-funded study, and to present their proposals at a brief plenary.

Coincident with the UK-wide study, the University was undertaking its own development of strategies for new learning space design, and was therefore able to become better informed from the JISC-funded survey, with its exemplars of good practice.

Some of the work of the Learning and Teaching Facilities Group (LTFG) at Birmingham will be presented at the close of this Workshop by the presentation of two “before and after” examples from Birmingham that show how new and innovative learning spaces have been created that are recognised to contribute to enhancing the learning quality for both modern learners and teachers.

[A PPT accompanies this Workshop, to present the work of the study, the design activity, and the exemplar work undertaken at Birmingham].

Keywords: JISC funding; UK-wide survey; learning spaces; learning space design; enhancing learning quality; modern learners

Introduction
The University of Birmingham bid and was successful in securing JISC funding under the JISC e-Learning Programme, (http://www.jisc.ac.uk/elearning_innovation.html) to report upon the ways in which learning technologies are influencing the design of physical learning spaces in further and higher education institutions across the UK. The study was undertaken by a team from the University of Birmingham, and gave the University an excellent opportunity to study current usage, design, and trends in the use of learning technologies, in order to see how future space designs were changing elsewhere.

This work was of particular importance to Birmingham as the University was about to embark upon its own refurbishment plan and was acutely aware of the importance of providing space and learning technologies that would inspire, attract and support modern learners and teachers.
Background – the JISC-funded study
The overall objective of the study was to produce a set of guidelines for Senior Managers in Higher and Further Education on the design and use of learning spaces in their institutions.

The study commenced with a questionnaire sent to all Higher Education Institutions (HEI’s), Further Education Colleges (FEC’s) and 6th Form Colleges. The aims of the questionnaire were to:
- Gain an understanding of current use of physical learning space in UK post-16 educational institutions
- Gain an insight into how the use of learning technologies are shaping the design and use of physical learning spaces in those institutions
- Identify Institutions that were using/developing innovative spaces for T&L

90 responses to the questionnaire were received. From these, 15 institutions who were developing new and innovative learning spaces were selected to receive a visit, from which case studies would subsequently be created.

Outcomes of the study
The full report from the study can be found at www.espaces.bham.ac.uk, including how the study and the visits were undertaken, and a resume of findings and recommendations.

In brief, a number of key themes emerged from the visits to those institutions who were successful in implementing new and innovative projects in integrating new technologies and learning spaces. These are:

- Strategic Drivers
- Practical Aspects of Learning Space Design
- Project Management
- Detailed Design Considerations
- Commissioning: implementing, ownership, maintenance

Strategic Drivers
Institutions have a number of drivers which influence any changes to be implemented; however the two main drivers for developing new T&L spaces are Pedagogical and Operational.

Pedagogical:
Pedagogical drivers came from:
- Implementation of institution’s Learning and Teaching Strategies
- Changes in learning and teaching methods at faculty and/or departmental level
- Key academics, or learning and teaching champions

Operational:
Operational drivers included:
- Refurbishing poor estate
- Compliance with SENDA (Special Educational Needs and Disabilities Act)
- Consolidation of sites
- Special projects
- Changes in student numbers
- Meeting student expectations, and changes in student finances and life-styles.

Successful projects sought both operational and pedagogic effectiveness.
Practical Aspects of Learning Space Design

Successful projects had included a design process where there was a full understanding of how the new space/s would be used. Although many of the spaces visited were unique in their own way, for the purpose of the study, spaces were placed in 4 general categories:

- Teaching Spaces
 - Traditional teaching spaces including lecture theatres, seminar rooms and classrooms, where teacher led activities are undertaken
- Open Access Spaces
 - Computer clusters, study areas where students will drop into to undertake self directed learning as an individual or in groups
- Social Spaces
 - Cafes, refectories, common rooms
- Other Learning Spaces
 - Student residences, home, corridors, foyers, outdoor spaces, spaces not traditionally considered as learning spaces

Detailed Design Considerations

Design considerations for the development of new and innovative spaces include but are not limited to:

- Sound pedagogy
- Keep it simple and flexible wherever possible
- "Future proof" where possible
- Legal and compliance issues
- Glossary of room types with definitions and standards
- Room Design and Guidelines
- Fixtures, Fittings and Furnishing
- Equipment
- Technical Infrastructure
- Physical Environment

Workshop activity

A design activity undertaken in small groups (eg 4-6 persons) for the creation of a new learning space from the principles learnt from the JISC-funded study, and to present their proposals at a brief plenary. Each group will be provided with appropriate room plans and specification information, and creative materials to construct their proposed design.

Development of a Learning Spaces Strategy

- The situation at Birmingham at the time of the JISC Study

At the time of the JISC Study, the University had in place a Learning and Teaching Facilities Group (LTFG). This group was concerned with all non academic aspects of the support of the University’s central pool of learning and teaching space and consisted of Administrators, Academic staff, Support staff and Students.

In 2005 the group commissioned an audit of the central pool of learning and teaching space in order to identify the priorities for the anticipated round of Higher Education Funding Council of England (HEFCE) funding for Teaching and Learning. This audit report identified that there was a significant shortfall in the investment in University T&L space and that a substantial sum of money would be required to bring the space up to an acceptable standard.
Although at this time funding was not available to start the investment process, the University was experiencing pressure from a number of areas. There was high demand for good quality facilities for all students from both staff and students. The increase in use of the University’s virtual learning environment (iVLE) meant that there was a significant need to create additional open access spaces for students to access the iVLE. Alongside this there existed a number of projects piloting Enquiry Based Learning (EBL) and Learner Independence, areas which also needed new and innovative spaces to enable these activities to be undertaken and mainstreamed. Also, space is an issue in student recruitment and retention and students will make their choices on where to study on the quality and condition of spaces that they see during their short open day visits.

Not least is the need for efficient and effective use of space and Estate, which academic staff also exercising their choice not to teach in rooms they deem as unsuitable.

Development of a Learning Spaces Strategy

As a result of the Audit, the LTFG commissioned the development of a Learning Spaces Strategy that would sit alongside and influence the University’s Estate Strategy to embed the Academic and Pedagogic requirements into any future developments of learning spaces.

A programme of consultation was undertaken over a 6 month period and included:

- Academic consultation
- Focus Groups
- End users – students
- Support staff
- Road-shows held in 33 departments
- Head of elearning
- Head of IT

The Learning Spaces Strategy

At the end of the consultation period the Learning Spaces Strategy was developed included a set of guiding principles for the future development of all learning spaces on the campus. The strategy was based on the creation a number of “learning zones” around the campus. These zones would include a number of University buildings providing a wide range of facilities for students. These zones would develop and evolve to reflect the activities of students and disciplines within those zones and help to create and support the identities of the users unlike the current generic spaces to be found campus wide. The provision of a single, centrally located learning centre drawing all students into necessarily generic space was not what was wanted by staff or students.

The report’s recommendations created some guiding principles to summarise the objectives of the strategy. These included:
Guiding Principles
1. To establish 5 academic learning zones (4 at Edgbaston, and 1 at the Selly Oak Campus)
2. All developments would be led by Academic direction, supported by university level co-ordination of the management of spaces.
3. Each zone will have a mix of learning spaces, to include:
 - Student centred flexible learning spaces
 - Large (minimum 200 seat) lecture theatres which incorporate flexible design features
 - ‘breakout’ spaces
 - Small group study rooms and seminar/meetings rooms
 - A café
 - Helpdesk/support services
 - Subject focused/specialist spaces
4. Accessible:
 - Controlled access for learners and teachers over a wide range of hours (potentially 24x7)
 - Compliant with disability standards & best practice
5. Equipped throughout with enabling technologies and wireless (and conventional) network infrastructure
6. All existing learning spaces to be equipped to an agreed standard.

These principles will be linked to the University Estate Development Plan currently under development. Until the plan has been adopted, a 3 year refurbishment programme is being developed together with a forward plan which will provide funding for a rolling programme of equipment and furniture replacement.

Development of Collaborative and Social Learning Spaces in Engineering
As a result of the consolidation of library stock due in part to developments in the availability of digitised texts, two engineering library spaces became available for development.

1. Gisbert Kapp Learning Suite

The first in the School of Electrical, Electronic and Computing Engineering was a space of approx 160 square metres, located conveniently by reception on the ground floor of the building. The space consisted of a long rectangular study room and a book stack that had sliding doors to enable the stock to be secured out of hours whilst the space was still available to students for study activities.

A decision was made to use this space to develop a new study learning space, but to experiment and use furniture and equipment not found in student facilities elsewhere.

A project brief was created for the space to be completely cleared to give us a bare shell which would be redecorated and carpeted.

In the meantime, a small team consisting of members of the “espaces” project team began to work with furniture and audio visual equipment suppliers to develop new and innovative layouts.
The aspiration for the space was that it should:

- Accommodate individual study
- Accommodate Group study
- Be a social space for students to gather in
- Give access to IT facilities including printing and photocopying
- Give access to projection facilities
- Have writing facilities
- Be flexible
- Be a space that students will want to be in for long periods of time
- Be intuitive to use

As this space is un-staffed, it was important that there should be nothing too complex that may create too many problems for students, although there was telephone access to the helpline.

The space previously occupied by the book-stacks when cleared was discovered not to have and power or data provision, however the lighting was good. Concerns over the potential presence of asbestos in the ceiling void (always a concern as the regulations regarding asbestos hazard levels continue to change) meant that it was not possible at this stage to provide new power and data supplies to this area. As a result, this space was partitioned to create two areas, one where students could work around round tables (seating up to 6 people) and have access to wall mounted whiteboards and the other which had a range of soft seating, but also had the whiteboard facility. The wooden doors to the old book-stacks were in light oak with an open fretwork design. It was decided to keep these doors to allow student to be able to close them to reduce noise coming from the larger area outside. This has worked very well.

The main room also had issues relating to power and data supplies, however the barrier to increasing data supplies was the need to upgrade the High Speed Campus Network, planned for the following year. It was decided to use the existing 8 data points to provide a networked printer, 2 networked computers operating through 42" plasma screens with touch-screen overlays and 5 PC's located around the periphery of the room.

Key features:
- The plasma screens were located in opposite corners of the room by the large group study tables.
- New low profile, low emission PC's fixed to the rear of 19" LCD screens on articulated arms were fitted to semi-circular tables that could accommodate up to 4 students
- The remainder of the room was furnished with study tables on wheels for ease of movement, and a number of upholstered sofas.
- New screens on wheels with a combination of whiteboard fabric to absorb sound were provided to screen off the PC/study areas

The new space, which was called a “Learning Suite”, and could accommodate approximately 80 students, was opened in May 2006.
Learning points:

- Very quickly the Learning Suite became extremely well used, with student satisfaction levels being very high. Student feedback informed us that they really wanted a larger number of PC’s available to them (despite the fact that there is a 60 place, School-managed computer cluster next door!!), that the plasma screen for PC use was great, but that there were issues when trying to access the “smart” software for the overlays.

- The wired keyboards and mice meant that it was difficult for more than one or two students in a group to have control over the PC. It was also discovered to be virtually impossible for students to use the whiteboard simultaneously on both sides of the screens as they were not stable enough. Overall however, the response was good.

- Very quickly, the School began to see potential uses for the room and a number of requests were received for various events to be held there. The principle that this was an open access facility for the students during term time had to be reinforced quite strongly, however there were some student focussed events that were accommodated.

- The School had problems every year finding a location for student project work to be exhibited and assessed, and with student consent it was deemed appropriate to hold the exhibition in the Learning Suite.

- In addition, a lecturer teaching design had been allocated a small seminar room for his design group, but the space was too small to accommodate his group. As there was interest in whether or not this sort of space could be used as a teaching space, the design module was taught in the Learning Suite on Wednesday mornings during the Autumn Term. Evaluation of the experience was carried out by the Learning Development. (see attached)

- During the vacation periods, staff within the School use the space for a number of events, including PG open days and hosting a variety of visitors to the School.

2. The Garner Learning Suite

Shortly after the completion of the first Learning Suite, the Garner library in the Chemical Engineering Building named after its original developer, Professor Garner, became available for development. This space was larger than the first, at approx 200 square metres, a large rectangle with a small office at one end. This was a traditional oak lined room with built in oak and glass bookcases, a vaulted ceiling and a serious roof leak.

Because of the physical work needed to improve this space, and the need to develop a scheme that would be sympathetic with the existing environment, a project was raised for a full refurbishment of the space. The intention for this space was to further develop the concept of student open access Learning Suites, learning from the lessons from other projects and looking to continue to provide new and different facilities.
The planning for the conversion of this school space was carried out in conjunction with regular meetings with members of the staff and students from the School. The greatest concern from the students was the loss of the large library tables around which their large project groups get together to work.

An Architect was commissioned to help with the design of the space, not only to develop furniture layouts but to assist with the issue of the oak panelling. No-one wanted to gut the room and lose the panelling or the bookcases, but what was the alternative?

The solution was to create new false panelling to accommodate power and data supplies etc which would preserve the bookcases and panelling for the future at the same time as creating a new fresh modern feel to the space. One bookcase was kept as a feature of the room with an alcove to accommodate Professor Garner’s portrait.

An interesting feature of using the skills of the architect was the use of colour which is quite extensive in this scheme with around 16 different colours used on the walls and furniture. This has received mixed responses, but mainly from staff.

A further development was with the lighting, the project manager of the scheme is a lighting expert, and as a result of becoming inspired by the architect’s plans, developed a unique lighting scheme which includes LED lighting which scrolls through the spectrum of colours, looking particularly spectacular at night. The system is also able to create different natural daylight configurations to map onto the changing light patterns throughout the day. However, currently, the scrolling coloured lights are the favourite.

Key features:

- In this space a system of self supporting screens and seating has been used to create definitive spaces whilst maintaining the overall flexibility to the room. Should changes to the layout be required, the screens can be dismounted and removed, without leaving behind any marks or damage. Some of the screen panels are finished in whiteboard material for added functionality, and are completely stable.

- A larger “cluster” of the low profile, low emission PC’s has been provided, but now with web cams as standard. A large number of students are from overseas, access to web cams allows all students to keep in touch with home whenever they need.

- The plasma screens and PC’s now have wireless keyboards and mice, but the overlays have gone for the moment. New electronic whiteboards which scan and print work are now available, but do not seem to be too popular at this stage.

- The old Librarian’s office has been turned into a boardroom with access to data projection. As this also is an un-staffed area, a local electronic booking system is located outside the room to enable the students to make bookings for the room.

A new feature in this room is the “meeting pod”, a discrete circular space in which the students can sit, work and talk without disturbing or being disturbed by others in the room. This space is also used regularly by students looking for a space to pray.
Reflections and Recommendations for the Future

The projects we have described have been carried out on a relatively small and experimental basis. Although throughout the process students were involved as much as possible, it is true to say that many students are not interested in this subject as they don’t see themselves as the primary beneficiaries – rather, any developments will be enjoyed by students of the future.

However, the evidence from the students is that when presented with these new spaces, they want more to be available and for longer hours!!

The key elements to future developments in learning spaces should include the following:

- A University-wide view on how learning spaces should be developed to accommodate the changing needs of the learners and the curriculum
 - To include staff from all areas of the institution working on projects other than those with which they have a vested interest

- A rolling programme of evaluation and reflection of:-
 - how new spaces are improving and enhancing the student experience
 - what is and what is not working
 - the ability to make changes where appropriate to change what is not working

- An understanding that our requirements for space will change at a much faster rate and therefore:
 - We can no longer refurbish/remodel spaces and leave them for 30 years or so
 - New spaces must be quickly and easily adaptable

- Challenge the principles that have kept us from moving this area forward previously:-
 - Room booking requirements (“bums on seats”)
 - Maintenance requirements (rooms that are created to be easy for the maintenance team to manage, but are not for the teacher and learner to use)
 - Funding
 - Space is a finite resource, and in particular, Teaching & Learning space has been severely under-funded for too long
 - New investment today must be supported by continuous investment to maintain quality

Questions!!
Bibliography

JISC e-Learning Programme, (http://www.jisc.ac.uk/elearning_innovation.html) [accessed 8th March 2008]

Study on How Innovative Technologies are Influencing the Design of Physical Learning Spaces in the Post-16 Sector (www.espaces.bham.ac.uk) Accessed 8th March 2008

“Learning in a passive system has a much greater tendency to be both superficial and quickly forgotten. Active involvement in learning helps the student to develop the skills of self-learning while at the same time contributing to a deeper, longer lasting knowledge of the theoretical material...[and] it is almost the only effective way to develop professional skills and to realise the integration of material from different sources.”

(McGowan and Knapper, 2002, p.633)

Thus the faculty’s ambition to improve the learner experience is underpinned by a learning and teaching vision to build a community of learners, through employer and profession focussed activity led education. This teaching and learning vision (see Appendix A for further details) characterises the activity led learning experience the faculty wants its students to have. It also recognises that the learning experience is supported in a number of different ways and through a number of different ‘agencies’ including registry, academic, professional and technical functions. The Faculty’s planned £60 million new building design will be informed by this vision and the need to further integrate service functions to support the student experience.

For reasons indicated above, a key feature of the teaching and learning vision is Activity Led Learning (ALL). ALL (as defined by the Faculty) is a pedagogic approach in which the activity is the focal point of the learning experience and the tutor acts as a facilitator. An activity is a problem, project, scenario, case-study, research question or similar in a classroom, work-based, laboratory-based or other appropriate setting and for which a range of solutions or responses are appropriate. Activities may cross subject boundaries, as activities within professional practice often do. Activity Led Learning requires a self-directed inquiry or research-like process in which the individual learner, or team of learners, seek and apply relevant knowledge, skilful practices, understanding and resources (personal and physical) relevant to the activity domain to achieve appropriate learning outcome(s) or intention(s). To be appropriate, the learning outcomes or intentions must be consistent with the aims, outcomes and intentions of the programme of study with which the student is engaged.

History and development of activity led learning

The Faculty of Engineering and Computing has a long history of thoughtful and experimental learning design with programmes designed specifically to enhance employability and professional skills (see also Wilson-Medhurst et al, 2008). This thoughtfulness however has never been on a cross-discipline, whole Faculty scale, however a large investment in a new faculty building has provided just such an
opportunity to do this. The Faculty has therefore been exploring its own history and experience, viewing excellent examples of teaching and learning around the world and through this has begun a debate to define a strategy, and the operationalisation of that strategy, for future teaching and learning.
The history of the Faculty includes innovative learning programmes such as problem-based approach to learning in Automotive Engineering Design (Griffiths et al, 1993). This was the first time that a UK mechanical engineering derivative was accredited at Chartered Engineer level with no examinations. More recently, building on past work, there has been innovative curriculum development within Motorsport BEng course (Booth and White, 2008). Other examples are the work done by the department of the Built Environment on engaging part-time learners in the support and professional skills development of full-time students (Davis and Davies, 2008). This work built on earlier research by Davies on the part-time student experience and their better average achievement levels (scores) when compared to full-time students (Davies, 2008). In computer science there has been a radical review of computer science learning resulting in moves into new subject areas, while the Faculty’s excellence in mathematics support is recognised as a national centre of excellence in teaching and learning with two national teaching fellowship holders.

In support of this Faculty members have been engaging in a major review of international examples of thoughtful teaching and learning in engineering, computing and mathematics. By way of illustration of this, discussions have taken place with colleagues at the University of Strathclyde, Department of Mechanical Engineering, where radical thinking was applied to the physical act of teaching in order to address issues about retention and engagement. With the University of Aalborg, Denmark, who are internationally renowned as a centre of problem-based learning and the University of Southern Denmark, who make interesting use of building space to facilitate learning activities. Queen’s University, Canada, who have designed space to much better develop professional skills development in engineering students, and where very interesting ‘use’ is made of the students to effectively engage them in the whole process of learning. Links and discussions are taking place with the University of Colorado, Boulder, the University of Queensland, Brisbane, the University of Sydney and the Laurea University of Applied Sciences in Finland. In relation to the latter, see for example Vyakarnam et al’s, 2008 report on Laurea’s ‘learning by developing’ pedagogical approach.

In the 2006/2007 academic year, armed with much of the above evidence, a small group developed an initial vision statement to set out the aims and principal objectives for the changes to the Faculty learning and teaching approach. This was developed in parallel to the initial brief for the design of the new Faculty building. This document then provided a base for the development of a working group, comprising interested, enthusiastic members of the Faculty’s academic community. This working group met in November 2007 and then January 2008 to further refine the vision – as summarised in appendix A.

Building capacity in researching and evaluating ALL

Following on from the above developments, the fundamental research question this paper focuses on is how to build capacity in researching and evaluating activity led learning, within engineering and computing and the allied disciplines. Capacity building is here defined as ‘enhancing people’s awareness and capabilities, individually and collectively, to produce the results they truly care about’ (Senge and Scharmer, 2001). It is also important such capacity building is sustainable. A useful exploration of sustainability is provided by McNiff and Whitehead:
“Sustainability refers to the idea that living systems have the capacity for interdependent self-renewal, which is indispensable for continuing development. Reliance on an external agency means that a system may collapse if the agency is withdrawn, whereas internal capacity means the interdependent creation of renewable resources for growth.”

(McNiff and Whitehead, 2006, p. 18)

To achieve sustainable capacity building a key mechanism being investigated is that of supporting the development of a community of practice (Wenger 1998). That is, a community of practitioners researching and evaluating their ALL teaching practice. The focus of the rest of this paper is on explicit frameworks for supporting capacity building through the development of such a community of practice. A community of practice provides a mechanism for promoting sustainable innovation whatever the faculty structure. This is important as the faculty is currently reviewing its departmental groupings and overall structure.

Levels of rigour in inquiry

The capacity building definition above can be framed within a ‘levels of rigor in inquiry’ framework outlined below:

<table>
<thead>
<tr>
<th>Level of inquiry</th>
<th>Attributes of that level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1: Excellent Teaching</td>
<td>Involves the use of good content and teaching methods</td>
</tr>
<tr>
<td>Level 2: Scholarly Teaching</td>
<td>Good content and methods and classroom assessment and evidence gathering, informed by best practice and best knowledge, inviting of collaboration and review.</td>
</tr>
<tr>
<td>Level 3: Scholarship of Teaching</td>
<td>Is public and open to critique and evaluation, is in form that others can build on, involves question-asking, inquiry and investigation, particularly about student learning</td>
</tr>
<tr>
<td>Level 4: Rigorous Research in Engineering Education</td>
<td>Also is public, open to critique, and involves asking questions about student learning, but it includes a few unique components. (1) Begin with a research question not an assessment question. Assessment questions often deal with the “what” or “how much” of learning, while research questions more often focus on the “why” or “how” of learning (2) Tying the question to learning, pedagogical, or social theory and interpreting the results of the research in light of theory. This will allow for the research to build theory and can increase the significance of the findings. For example, studies about teaching thermodynamics can be redesigned to become studies based on cognitive theory, which can help explain why certain concepts in thermodynamics are so difficult to learn. (3) Paying careful attention to design of the study and the methods used. This will enable the study to hold up to scrutiny by a broad audience, again creating a potential for greater impact of results.</td>
</tr>
</tbody>
</table>

Table 1: Levels of rigour in inquiry (source and further attributions: Borrego, 2007, p.94)
Hence, within EC at Coventry, capacity building can be seen as supporting researcher practitioner in moving ‘up’ the levels, but also supporting an exchange between those operating at different ‘levels of rigour’. It should be emphasised at this point that the author does not subscribe to the view that one level is necessarily ‘better’ than another, but certainly recognises that for research and evaluation capacity building purposes, having practitioners who can operate at all four levels is important.

Faculty context

The EC faculty at Coventry is currently comprised of seven departments (although this structure is currently under review) as shown in the table below:

<table>
<thead>
<tr>
<th>EC Department</th>
<th>Indicative disciplines (not exhaustive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built Environment</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td></td>
<td>Building Surveying</td>
</tr>
<tr>
<td></td>
<td>Built Environment Studies</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Computer Science</td>
</tr>
<tr>
<td></td>
<td>Network Computing</td>
</tr>
<tr>
<td></td>
<td>Multimedia Computing</td>
</tr>
<tr>
<td></td>
<td>Creative Computing</td>
</tr>
<tr>
<td>Engineering & Manufacturing Management</td>
<td>European Engineering Business Management</td>
</tr>
<tr>
<td></td>
<td>Manufacturing Systems and Technology</td>
</tr>
<tr>
<td></td>
<td>Manufacturing with Management</td>
</tr>
<tr>
<td>Knowledge and Information Management</td>
<td>Business Information Technology</td>
</tr>
<tr>
<td></td>
<td>Information Management</td>
</tr>
<tr>
<td>Mathematical Sciences</td>
<td>Mathematical Sciences</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
</tr>
<tr>
<td>Mechanical Engineering and Design</td>
<td>Automotive Engineering</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>Motorsport Engineering</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>Aerospace Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>Aerospace Technology</td>
</tr>
<tr>
<td></td>
<td>Electronics Technology</td>
</tr>
<tr>
<td></td>
<td>Digital Forensics & System Security</td>
</tr>
</tbody>
</table>

Table 2: Departments (and indicative disciplines) within Engineering and Computing as at Jan 2008

As indicated in the above history and development section, the Faculty leads one of Coventry University’s three HEFCE (Higher Education Funding Council for England) funded Centres for Excellence in Teaching and learning (CETLs) and has two National Teaching Fellows. The CETL in question - Sigma - is a HEFCE-designated CETL in University-wide support in Mathematics and Statistics. More specifically in relation to ALL, there are also substantial pockets of good activity led teaching practice/scholarly teaching see e.g. Booth and White, 2008, Lambert et al 2008, and Davis and Davies 2008.
There is therefore a strong basis for building a community of practice of practitioners researching and evaluating ALL and so contribute to the body of knowledge about learning within the engineering, computing, mathematics and allied disciplines indicated in table 2 above. Such a community of practice, cutting across subject/departmental boundaries, provides a mechanism for sustainable innovation in activity led learning practice that meets the needs of staff and students.

Continuous improvement

The framework for building this community of practice in researching and evaluating ALL, relies on a continuous improvement change management model as in Senge’s notion of the ‘learning organisation’ (Senge, 1990). Such a change model aligns well to the community of practice framework for supporting capacity building, as the following quote from Senge attests:

“The organisations that will truly excel in the future will be the organisations that discover how to tap people’s commitment and capacity to learn at all levels in the organisation.”

(Senge, 1990, p.4)

A community of practice tries to ‘tap’ such learning.

A ‘hub and spokes’ structure also aims to support this endeavour. Thus at the ‘hub’, set within the context of the faculty’s learning and teaching vision, there is a recently formed faculty learning teaching and assessment (LTA) group, chaired by the faculty TDF with an explicit teaching quality enhancement remit especially supporting innovation in teaching, learning and assessment. To support research and evaluation activity around ALL innovation, the faculty has provided funds to support a mini-project in one of each of the faculty’s seven departments. Each mini-project has a £2000 fund (see appendix B for further details of the terms of reference for the fund bidding process). These mini-projects are the ‘spokes’ and are connected to the ‘hub’ via the project leader who is a member of the LTA group. Mini-projects are shaped and defined by the participants (LTA project leader) with the support of the TDF and other faculty members.

This structure allows the ‘bottom up’ enthusiasm of the LTA project leaders to be supported by the LTA group i.e. for sharing, analysing and discussing findings, with the aim of supporting the emergence of a community of practice. Additionally the researcher practitioners are also supported by an appropriate research and evaluation framework of action research (as discussed below). To encourage dissemination beyond the LTA group, and so cast the ‘community of practice’ net wider the LTA group also has a dissemination remit (see appendix C for the terms of reference of the LTA group). This structure sits well with the findings of Arlett et al 2007 whose “..paper suggests that small-scale funding aimed at improving learning and teaching is more likely to succeed when ‘top-down’ institutional support coincides with ‘bottom-up’ enthusiasm from funded academics.”
Therefore to achieve sustainable innovation within a continuous improvement change management model, this paper is arguing certain key things should be in place including: clear teaching and learning vision; commitment from Faculty and University Senior Management to provide financial and other resources such as ‘thinking space'; bottom up engagement supported by an appropriate framework. This paper now concentrates on outlining the methodology for supporting the bottom up engagement set within the current overarching vision and framework (as outlined above). The framework for supporting bottom up engagement is an action research model (see e.g. McNiff and Whitehead, 2006) as outlined below.

Research methodology for sustainable capacity building

Action research “..is a form of enquiry that enables practitioners everywhere to investigate and evaluate their work. They ask, ‘What am I doing? What do I need to improve? How do I improve it?’ (McNiff and Whitehead, 2006, p. 7). The action-reflection cycle of action research is a suitable framework for the kind of pedagogical research and evaluation activity that the EC LTA projects are/will engage in. A similar action research framework has been encouraged for example by the engCETL at Loughborough (Moron-Garcia, 2007).

Action research provides an opportunity for a sustainable framework for pedagogical research and evaluation activity centred around ALL. This since it provides a route for those who are good teachers, and perhaps moving into scholarly teaching and beyond, to link this kind of research into what they are *already doing* and at the same time keep their focus on enhancing learning and teaching. As indicated above this particular model also aligns with Senge, 1990’s notions of continuous improvement and the learning organisation (see Wilson-Medhurst et al, 2008 for further exploration).

Meta-framework

Each of the above mentioned LTA mini-projects is an action research project and the EC LTA group, chaired by the TDF, provides a mechanism for sharing, analysing and discussing research plans and findings. Additionally at the meta-level the TDF and LTA chair (and author of this paper!) is themselves conducting an action research ‘project’ on how to build capacity in researching and evaluating activity led learning. In this case the action or intervention is the above described methodological framework, and linking support structures, for building capacity through the development of a community of practice. So the fundamental question for this researcher is, what aspects of the above interventions (if any) is influencing other people’s learning and what am I learning about capacity building as a result? This to refine the interventions (actions) and/or generate a more focussed research question.

Evaluation

This paper has explored a methodological framework for building capacity in activity led learning research and evaluation activity. Thus the action after a period of reflection and investigation has been to put in place the above outlined structures and supporting frameworks. The next stage within the action-reflection cycle is to evaluate the action taken.
Within the above framework one appropriate indicator might be the number of LTA project leaders, or their associates, who are now, in relation to activity led learning, moving from one ‘level of rigour’ to the next and/or are able to operate comfortably at various different levels. Early indications are for example, that one member of staff is moving between level 1 and 2 and another between level 2 and level 3. A more complete evaluation will be possible by the end of the first full year of operation (the LTA projects are just starting in the Spring term of the 2007/8 academic session).

However this kind of intervention requires more than one source of evidence (for triangulation benefits) and interviews with researcher practitioners will be an important source of further information. For example, the interviews will examine what features of the above interventions might have helped or hindered the researcher-practitioners in developing their learning about how to operate at the different ‘levels of rigour’ and in supporting knowledge exchange between researcher-practitioners.

There is also the question of sustainability in terms of this researcher practitioner’s resources. That is, what are the set-up ‘costs’ in terms of time, effort, required expertise and so on and this is also an interesting area for further analysis. As is to what extent any community of practice benefits are realised for all the researcher practitioners.

Conclusions

This paper has described methodological framework for building Activity Led Learning research and evaluation capacity. A continuous improvement change management model and an action research methodology have informed the design of support structures that aim to facilitate the emergence a self-sustaining community of practice (and so build capacity). This ‘project’ is at the ‘action’ stage of the action-reflection cycle and the evaluation phase will seek to examine what features of the interventions the researcher-practitioners found useful. This evaluation will use a ‘levels of rigour’ framework and researcher-practitioner interviews. The resources required for this kind of intervention, and its sustainability, will also be investigated and evaluated.

References

Race, P. (2000) How to get a good degree making the most of your time at university. Buckingham: Open University Press.

Appendix A
A vision for learning and teaching
in the
Faculty of Engineering and Computing

Introduction

The aim of this summary is to present the Faculty’s vision for learning and teaching. The Faculty wishes to maintain and develop its national and international reputation for high quality professionally focussed graduates and the learning experience that it provides. This approach to learning and teaching is motivated by the desire to produce graduates who have

- Confidence in their ability
- Capability to achieve
- Capacity to reflect, innovate and renew

To achieve this the Faculty wishes to develop a reputation for a radical activity led learning culture, building on existing areas of good practice. All students will experience a development of their professional skills through activities related to their subject.

The Faculty has a one-off opportunity, through a £60,000,000 project to create an environment planned and designed to support the delivery of this high quality experience which will incorporate leading-edge learning and teaching practice.

Vision

The Faculty is committed to developing communities of learners through employer and Profession focussed, activity led education. In this stimulating environment students will become fully engaged in the learning process, resulting in them becoming highly employable graduates who are able to lead and develop society through their enhanced research, team working and project management skills.

The key aspects of this statement are:

- Communities of Learners – An environment for learning comprising students and staff where all members contribute to their own learning and the learning of others.
- Employer and Profession focussed education – A close partnership between the Faculty, employers and Professional bodies to develop appropriate curricula and learning environments through inputs from practising professionals, student placements, sponsorship, part-time study, projects, case studies and visits and ultimately leading to employment opportunities.
- Activity Led Learning – Our students will be engaged through challenges requiring them to develop and apply their technical and scientific knowledge, simultaneously developing their team working, leadership, problem solving and life-long learning skills and utilising life-wide learning.
The key benefits of this approach will be:

- Better engagement of students and staff in the learning experience
- Improved student retention and progression
- Enhanced standards of student achievement
- Increased graduate employment rates
- Confident, self-motivated and successful members of society
- Enhanced reputation leading to increased student recruitment
- Greater staff and student satisfaction
- A vibrant learning community attractive to students and staff

This vision acknowledges the explicit links between research and teaching:

- Applied research (pedagogical) to inform teaching practice and applied research (within discipline) to inform teaching, with parity between the two.
- Researchers as contributors to the teaching practice and part of the learning community.
Appendix B

Faculty of Engineering and Computing
Learning Teaching & Assessment Projects

Introduction

A major element of the Learning and Teaching Strategy for the Faculty is to develop new approaches to pedagogy. These approaches will be instrumental in guiding the design and use of the new Engineering & Computing Building. The aim of this short paper is to propose a methodology for encouraging innovation and the further development of existing good practice, for evaluating the success and fitness for purpose of these new approaches and for encouraging a more widespread adoption of these new approaches within the Faculty.

Approach

1. A small fund will be made available to support one innovative pilot project in learning, teaching and assessment based in each of the seven departments in the Faculty.

2. Each department would be allocated an additional £2000 to their part-time staffing budget. This would be used to give nominated permanent members of staff in the department time that would be dedicated to the LTA project.

3. Each department will be asked to submit a brief outline of their proposed project on one side of A4 for approval by Deans Advisory Group (DAG) and Faculty Teaching Development Fellow (TDF) before the funds are made available. The project should satisfy the following criteria:

 - Focus on some aspect of improvement in student retention, engagement and achievement.
 - Be consistent with the general aims to develop a Communities of Learners, encourage Employer and Profession focussed education and engage in Activity Led Learning.
 - Have a clearly defined approach and outcomes that can be evaluated.
 - The project outline must include a paragraph that describes the evaluation approach and identifies the resource required to complete this evaluation.

4. Each project would be guided and monitored by the EC LTA group chaired by the TDF. An aspect of the TDF role is to provide guidance and advice for these projects. Regular progress updates would be made to the LTA group for evaluation and dissemination.

5. On evaluation of the project at completion a short report would be submitted to the LTA group who would act as a key vehicle for review and wider dissemination of effective developments.

6. The results of the project should be disseminated at ELATE and/or other appropriate fora such as an HE Academy subject centre conference see e.g. http://www.ee2008.info/.
An LTA project may focus on (but is not limited to) one of the following, and, as outlined above, is appropriate as long as it is consistent with the general aims to develop a Communities of Learners, encourage Employer and Profession focussed education and engage in Activity Led Learning:

1. Improving engagement of students and staff in the learning experience
2. Improving student retention and progression
3. Enhancing standards of student achievement
4. Increasing graduate employment rates
5. Encouraging the development of confident, self-motivated and successful members of society
6. Engendering greater student and staff satisfaction
7. Developing a vibrant learning community attractive to students and staff
8. Utilising learning technologies (beyond the CUOnline minimum standard) to enhance the student and staff learning and teaching experience

The development of the outline project brief within each department should derive from open and inclusive debate within the department. The TDF is keen to be involved in these discussions.
Appendix C
Faculty of Engineering and Computing (EC)
Learning Teaching and Assessment (LTA) Group

Terms of Reference and Statement of Membership

Membership

Chair: EC TDF;
Deputy Chair to be selected from the members at the first meeting;
Up to two representatives per EC department (or nominee if the dept rep(s) can’t attend);
One representative from the Sigma CETL;
EC Academic Manager for the Student Experience;
Secretary.

Meetings

Normally one per term.

Purpose and scope:

Over-arching purpose is to promote innovation in teaching, learning and assessment as well as educational development activity / research and scholarship into HE practice by:

1. Supporting the implementation of those aspects of the EC L&T strategy that focus on the above innovation, development, and pedagogical research areas, and advising the EC QL&T committee of any key issues for their attention and action.

2. Receiving and discussing reports on key L&T projects within the faculty that seek to pilot and subsequently embed innovative practice within the curriculum, and referring key learning points to EC QL&T committee for consideration and action.

3. Acting as steering group for EC L&T events for staff. These events will bring in internal and (where appropriate) external speakers to highlight good practice and what has been learnt about the ‘perils and pitfalls’ of implementing L&T initiatives. Internal presenters are likely to include those involved with the L&T projects mentioned in (2) above.

4. Other activities consistent with the group’s over-arching purpose and scope.

\(^1\) In 2007/8 session (and subsequently for review) one of these departmental representatives will normally be the project leader for the faculty funded departmental LTA project.